taskwarrior/src/ViewTask.cpp

387 lines
13 KiB
C++

////////////////////////////////////////////////////////////////////////////////
//
// Copyright 2006 - 2021, Tomas Babej, Paul Beckingham, Federico Hernandez.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
// https://www.opensource.org/licenses/mit-license.php
//
////////////////////////////////////////////////////////////////////////////////
#include <cmake.h>
// cmake.h include header must come first
#include <Context.h>
#include <ViewTask.h>
#include <format.h>
#include <main.h>
#include <utf8.h>
#include <util.h>
#include <numeric>
////////////////////////////////////////////////////////////////////////////////
ViewTask::ViewTask()
: _width(0),
_left_margin(0),
_header(0),
_sort_header(0),
_odd(0),
_even(0),
_intra_padding(1),
_intra_odd(0),
_intra_even(0),
_extra_padding(0),
_extra_odd(0),
_extra_even(0),
_truncate_lines(0),
_truncate_rows(0),
_lines(0),
_rows(0) {}
////////////////////////////////////////////////////////////////////////////////
ViewTask::~ViewTask() {
for (auto& col : _columns) delete col;
_columns.clear();
}
////////////////////////////////////////////////////////////////////////////////
// |<---------- terminal width ---------->|
//
// +-------+ +-------+ +-------+
// |header | |header | |header |
// +--+--+-------+--+-------+--+-------+--+
// |ma|ex|cell |in|cell |in|cell |ex|
// +--+--+-------+--+-------+--+-------+--+
// |ma|ex|cell |in|cell |in|cell |ex|
// +--+--+-------+--+-------+--+-------+--+
//
// margin - indentation for the whole table
// extrapadding - left and right padding for the whole table
// intrapadding - padding between columns
//
//
// Layout Algorithm:
// - Height is irrelevant
// - Determine the usable horizontal space for N columns:
//
// usable = width - ma - (ex * 2) - (in * (N - 1))
//
// - Look at every column, for every task, and determine the minimum and
// maximum widths. The minimum is the length of the largest indivisible
// word, and the maximum is the full length of the value.
// - If there is sufficient terminal width to display every task using the
// maximum width, then do so.
// - If there is insufficient terminal width to display every task using the
// minimum width, then there is no layout solution. Error.
// - Otherwise there is a need for column wrapping. Calculate the overage,
// which is the difference between the sum of the minimum widths and the
// usable width.
// - Start by using all the minimum column widths, and distribute the overage
// among all columns, one character at a time, while the column width is
// less than the maximum width, and while there is overage remaining.
//
// Note: a possible enhancement is to proportionally distribute the overage
// according to average data length.
//
// Note: an enhancement to the 'no solution' problem is to simply force-break
// the larger fields. If the widest field is W0, and the second widest
// field is W1, then a solution may be achievable by reducing W0 --> W1.
//
std::string ViewTask::render(std::vector<Task>& data, std::vector<int>& sequence) {
Timer timer;
bool const obfuscate = Context::getContext().config.getBoolean("obfuscate");
bool const print_empty_columns = Context::getContext().config.getBoolean("print.empty.columns");
std::vector<Column*> nonempty_columns;
std::vector<bool> nonempty_sort;
// Determine minimal, ideal column widths.
std::vector<int> minimal;
std::vector<int> ideal;
for (unsigned int i = 0; i < _columns.size(); ++i) {
// Headers factor in to width calculations.
unsigned int global_min = 0;
unsigned int global_ideal = global_min;
for (unsigned int s = 0; s < sequence.size(); ++s) {
if ((int)s >= _truncate_lines && _truncate_lines != 0) break;
if ((int)s >= _truncate_rows && _truncate_rows != 0) break;
// Determine minimum and ideal width for this column.
unsigned int min = 0;
unsigned int ideal = 0;
_columns[i]->measure(data[sequence[s]], min, ideal);
if (min > global_min) global_min = min;
if (ideal > global_ideal) global_ideal = ideal;
// If a fixed-width column was just measured, there is no point repeating
// the measurement for all tasks.
if (_columns[i]->is_fixed_width()) break;
}
if (print_empty_columns || global_min != 0) {
unsigned int label_length = utf8_width(_columns[i]->label());
if (label_length > global_min) global_min = label_length;
if (label_length > global_ideal) global_ideal = label_length;
minimal.push_back(global_min);
ideal.push_back(global_ideal);
}
if (!print_empty_columns) {
if (global_min != 0) // Column is nonempty
{
nonempty_columns.push_back(_columns[i]);
nonempty_sort.push_back(_sort[i]);
} else // Column is empty, drop it
{
// Note: This is safe to do because we set _columns = nonempty_columns
// after iteration over _columns is finished.
delete _columns[i];
}
}
}
if (!print_empty_columns) {
_columns = nonempty_columns;
_sort = nonempty_sort;
}
int all_extra = _left_margin + (2 * _extra_padding) + ((_columns.size() - 1) * _intra_padding);
// Sum the widths.
int sum_minimal = std::accumulate(minimal.begin(), minimal.end(), 0);
int sum_ideal = std::accumulate(ideal.begin(), ideal.end(), 0);
// Calculate final column widths.
int overage = _width - sum_minimal - all_extra;
Context::getContext().debug(format("ViewTask::render min={1} ideal={2} overage={3} width={4}",
sum_minimal + all_extra, sum_ideal + all_extra, overage,
_width));
std::vector<int> widths;
// Ideal case. Everything fits.
if (_width == 0 || sum_ideal + all_extra <= _width) {
widths = ideal;
}
// Not enough for minimum. Decrease certain columns.
else if (overage < 0) {
// Determine which columns are the longest.
unsigned int longest = 0;
unsigned int second_longest = 0;
for (unsigned int j = 0; j < minimal.size(); j++) {
if (minimal[j] > minimal[longest]) {
second_longest = longest;
longest = j;
} else if (minimal[j] > minimal[second_longest]) {
second_longest = j;
}
}
// Case 1: Shortening longest column still keeps it longest. Let it bear
// all the shortening.
widths = minimal;
if (minimal[longest] + overage >= minimal[second_longest]) widths[longest] += overage;
// Case 2: Shorten the longest column to second longest length. Try to
// split shortening them evenly.
else {
int decrease = minimal[second_longest] - minimal[longest];
widths[longest] += decrease;
overage = overage - decrease;
// Attempt to decrease the two longest columns (at most to two characters)
if (-overage <= widths[longest] + widths[second_longest] - 4) {
// Compute half of the overage, rounding up
int half_overage = overage / 2 + overage % 2;
// Decrease both larges columns by this amount
widths[longest] += half_overage;
widths[second_longest] += half_overage;
} else
// If reducing two of the longest solumns to 2 characters is not sufficient, then give up.
Context::getContext().error(format(
"The report has a minimum width of {1} and does not fit in the available width of {2}.",
sum_minimal + all_extra, _width));
}
}
// Perfect minimal width.
else if (overage == 0) {
widths = minimal;
}
// Extra space to share.
else if (overage > 0) {
widths = minimal;
// Spread 'overage' among columns where width[i] < ideal[i]
bool needed = true;
while (overage && needed) {
needed = false;
for (unsigned int i = 0; i < _columns.size() && overage; ++i) {
if (widths[i] < ideal[i]) {
++widths[i];
--overage;
needed = true;
}
}
}
}
// Compose column headers.
unsigned int max_lines = 0;
std::vector<std::vector<std::string>> headers;
for (unsigned int c = 0; c < _columns.size(); ++c) {
headers.emplace_back();
_columns[c]->renderHeader(headers[c], widths[c], _sort[c] ? _sort_header : _header);
if (headers[c].size() > max_lines) max_lines = headers[c].size();
}
// Render column headers.
std::string left_margin = std::string(_left_margin, ' ');
std::string extra = std::string(_extra_padding, ' ');
std::string intra = std::string(_intra_padding, ' ');
std::string extra_odd = Context::getContext().color() ? _extra_odd.colorize(extra) : extra;
std::string extra_even = Context::getContext().color() ? _extra_even.colorize(extra) : extra;
std::string intra_odd = Context::getContext().color() ? _intra_odd.colorize(intra) : intra;
std::string intra_even = Context::getContext().color() ? _intra_even.colorize(intra) : intra;
std::string out;
_lines = 0;
for (unsigned int i = 0; i < max_lines; ++i) {
out += left_margin + extra;
for (unsigned int c = 0; c < _columns.size(); ++c) {
if (c) out += intra;
if (headers[c].size() < max_lines - i)
out += _header.colorize(std::string(widths[c], ' '));
else
out += headers[c][i];
}
out += extra;
// Trim right.
out.erase(out.find_last_not_of(' ') + 1);
out += "\n";
// Stop if the line limit is exceeded.
if (++_lines >= _truncate_lines && _truncate_lines != 0) {
Context::getContext().time_render_us += timer.total_us();
return out;
}
}
// Compose, render columns, in sequence.
_rows = 0;
std::vector<std::vector<std::string>> cells;
for (unsigned int s = 0; s < sequence.size(); ++s) {
max_lines = 0;
// Apply color rules to task.
Color rule_color;
autoColorize(data[sequence[s]], rule_color);
// Alternate rows based on |s % 2|
bool odd = (s % 2) ? true : false;
Color row_color;
if (Context::getContext().color()) {
row_color = odd ? _odd : _even;
row_color.blend(rule_color);
}
for (unsigned int c = 0; c < _columns.size(); ++c) {
cells.emplace_back();
_columns[c]->render(cells[c], data[sequence[s]], widths[c], row_color);
if (cells[c].size() > max_lines) max_lines = cells[c].size();
if (obfuscate)
if (_columns[c]->type() == "string")
for (auto& line : cells[c]) line = obfuscateText(line);
}
// Listing breaks are simply blank lines inserted when a column value
// changes.
if (s > 0 && _breaks.size() > 0) {
for (const auto& b : _breaks) {
if (data[sequence[s - 1]].get(b) != data[sequence[s]].get(b)) {
out += "\n";
++_lines;
// Only want one \n, regardless of how many values change.
break;
}
}
}
for (unsigned int i = 0; i < max_lines; ++i) {
out += left_margin + (odd ? extra_odd : extra_even);
for (unsigned int c = 0; c < _columns.size(); ++c) {
if (c) {
if (row_color.nontrivial())
row_color._colorize(out, intra);
else
out += (odd ? intra_odd : intra_even);
}
if (i < cells[c].size())
out += cells[c][i];
else
row_color._colorize(out, std::string(widths[c], ' '));
}
out += (odd ? extra_odd : extra_even);
// Trim right.
out.erase(out.find_last_not_of(' ') + 1);
out += "\n";
// Stop if the line limit is exceeded.
if (++_lines >= _truncate_lines && _truncate_lines != 0) {
Context::getContext().time_render_us += timer.total_us();
return out;
}
}
cells.clear();
// Stop if the row limit is exceeded.
if (++_rows >= _truncate_rows && _truncate_rows != 0) {
Context::getContext().time_render_us += timer.total_us();
return out;
}
}
Context::getContext().time_render_us += timer.total_us();
return out;
}
////////////////////////////////////////////////////////////////////////////////