//////////////////////////////////////////////////////////////////////////////// // // Copyright 2006 - 2021, Tomas Babej, Paul Beckingham, Federico Hernandez. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. // // https://www.opensource.org/licenses/mit-license.php // //////////////////////////////////////////////////////////////////////////////// #include // cmake.h include header must come first #include #include #include #include #include #include #include //////////////////////////////////////////////////////////////////////////////// ViewTask::ViewTask() : _width(0), _left_margin(0), _header(0), _sort_header(0), _odd(0), _even(0), _intra_padding(1), _intra_odd(0), _intra_even(0), _extra_padding(0), _extra_odd(0), _extra_even(0), _truncate_lines(0), _truncate_rows(0), _lines(0), _rows(0) {} //////////////////////////////////////////////////////////////////////////////// ViewTask::~ViewTask() { for (auto& col : _columns) delete col; _columns.clear(); } //////////////////////////////////////////////////////////////////////////////// // |<---------- terminal width ---------->| // // +-------+ +-------+ +-------+ // |header | |header | |header | // +--+--+-------+--+-------+--+-------+--+ // |ma|ex|cell |in|cell |in|cell |ex| // +--+--+-------+--+-------+--+-------+--+ // |ma|ex|cell |in|cell |in|cell |ex| // +--+--+-------+--+-------+--+-------+--+ // // margin - indentation for the whole table // extrapadding - left and right padding for the whole table // intrapadding - padding between columns // // // Layout Algorithm: // - Height is irrelevant // - Determine the usable horizontal space for N columns: // // usable = width - ma - (ex * 2) - (in * (N - 1)) // // - Look at every column, for every task, and determine the minimum and // maximum widths. The minimum is the length of the largest indivisible // word, and the maximum is the full length of the value. // - If there is sufficient terminal width to display every task using the // maximum width, then do so. // - If there is insufficient terminal width to display every task using the // minimum width, then there is no layout solution. Error. // - Otherwise there is a need for column wrapping. Calculate the overage, // which is the difference between the sum of the minimum widths and the // usable width. // - Start by using all the minimum column widths, and distribute the overage // among all columns, one character at a time, while the column width is // less than the maximum width, and while there is overage remaining. // // Note: a possible enhancement is to proportionally distribute the overage // according to average data length. // // Note: an enhancement to the 'no solution' problem is to simply force-break // the larger fields. If the widest field is W0, and the second widest // field is W1, then a solution may be achievable by reducing W0 --> W1. // std::string ViewTask::render(std::vector& data, std::vector& sequence) { Timer timer; bool const obfuscate = Context::getContext().config.getBoolean("obfuscate"); bool const print_empty_columns = Context::getContext().config.getBoolean("print.empty.columns"); std::vector nonempty_columns; std::vector nonempty_sort; // Determine minimal, ideal column widths. std::vector minimal; std::vector ideal; for (unsigned int i = 0; i < _columns.size(); ++i) { // Headers factor in to width calculations. unsigned int global_min = 0; unsigned int global_ideal = global_min; for (unsigned int s = 0; s < sequence.size(); ++s) { if ((int)s >= _truncate_lines && _truncate_lines != 0) break; if ((int)s >= _truncate_rows && _truncate_rows != 0) break; // Determine minimum and ideal width for this column. unsigned int min = 0; unsigned int ideal = 0; _columns[i]->measure(data[sequence[s]], min, ideal); if (min > global_min) global_min = min; if (ideal > global_ideal) global_ideal = ideal; // If a fixed-width column was just measured, there is no point repeating // the measurement for all tasks. if (_columns[i]->is_fixed_width()) break; } if (print_empty_columns || global_min != 0) { unsigned int label_length = utf8_width(_columns[i]->label()); if (label_length > global_min) global_min = label_length; if (label_length > global_ideal) global_ideal = label_length; minimal.push_back(global_min); ideal.push_back(global_ideal); } if (!print_empty_columns) { if (global_min != 0) // Column is nonempty { nonempty_columns.push_back(_columns[i]); nonempty_sort.push_back(_sort[i]); } else // Column is empty, drop it { // Note: This is safe to do because we set _columns = nonempty_columns // after iteration over _columns is finished. delete _columns[i]; } } } if (!print_empty_columns) { _columns = nonempty_columns; _sort = nonempty_sort; } int all_extra = _left_margin + (2 * _extra_padding) + ((_columns.size() - 1) * _intra_padding); // Sum the widths. int sum_minimal = std::accumulate(minimal.begin(), minimal.end(), 0); int sum_ideal = std::accumulate(ideal.begin(), ideal.end(), 0); // Calculate final column widths. int overage = _width - sum_minimal - all_extra; Context::getContext().debug(format("ViewTask::render min={1} ideal={2} overage={3} width={4}", sum_minimal + all_extra, sum_ideal + all_extra, overage, _width)); std::vector widths; // Ideal case. Everything fits. if (_width == 0 || sum_ideal + all_extra <= _width) { widths = ideal; } // Not enough for minimum. Decrease certain columns. else if (overage < 0) { // Determine which columns are the longest. unsigned int longest = 0; unsigned int second_longest = 0; for (unsigned int j = 0; j < minimal.size(); j++) { if (minimal[j] > minimal[longest]) { second_longest = longest; longest = j; } else if (minimal[j] > minimal[second_longest]) { second_longest = j; } } // Case 1: Shortening longest column still keeps it longest. Let it bear // all the shortening. widths = minimal; if (minimal[longest] + overage >= minimal[second_longest]) widths[longest] += overage; // Case 2: Shorten the longest column to second longest length. Try to // split shortening them evenly. else { int decrease = minimal[second_longest] - minimal[longest]; widths[longest] += decrease; overage = overage - decrease; // Attempt to decrease the two longest columns (at most to two characters) if (-overage <= widths[longest] + widths[second_longest] - 4) { // Compute half of the overage, rounding up int half_overage = overage / 2 + overage % 2; // Decrease both larges columns by this amount widths[longest] += half_overage; widths[second_longest] += half_overage; } else // If reducing two of the longest solumns to 2 characters is not sufficient, then give up. Context::getContext().error(format( "The report has a minimum width of {1} and does not fit in the available width of {2}.", sum_minimal + all_extra, _width)); } } // Perfect minimal width. else if (overage == 0) { widths = minimal; } // Extra space to share. else if (overage > 0) { widths = minimal; // Spread 'overage' among columns where width[i] < ideal[i] bool needed = true; while (overage && needed) { needed = false; for (unsigned int i = 0; i < _columns.size() && overage; ++i) { if (widths[i] < ideal[i]) { ++widths[i]; --overage; needed = true; } } } } // Compose column headers. unsigned int max_lines = 0; std::vector> headers; for (unsigned int c = 0; c < _columns.size(); ++c) { headers.emplace_back(); _columns[c]->renderHeader(headers[c], widths[c], _sort[c] ? _sort_header : _header); if (headers[c].size() > max_lines) max_lines = headers[c].size(); } // Render column headers. std::string left_margin = std::string(_left_margin, ' '); std::string extra = std::string(_extra_padding, ' '); std::string intra = std::string(_intra_padding, ' '); std::string extra_odd = Context::getContext().color() ? _extra_odd.colorize(extra) : extra; std::string extra_even = Context::getContext().color() ? _extra_even.colorize(extra) : extra; std::string intra_odd = Context::getContext().color() ? _intra_odd.colorize(intra) : intra; std::string intra_even = Context::getContext().color() ? _intra_even.colorize(intra) : intra; std::string out; _lines = 0; for (unsigned int i = 0; i < max_lines; ++i) { out += left_margin + extra; for (unsigned int c = 0; c < _columns.size(); ++c) { if (c) out += intra; if (headers[c].size() < max_lines - i) out += _header.colorize(std::string(widths[c], ' ')); else out += headers[c][i]; } out += extra; // Trim right. out.erase(out.find_last_not_of(' ') + 1); out += "\n"; // Stop if the line limit is exceeded. if (++_lines >= _truncate_lines && _truncate_lines != 0) { Context::getContext().time_render_us += timer.total_us(); return out; } } // Compose, render columns, in sequence. _rows = 0; std::vector> cells; for (unsigned int s = 0; s < sequence.size(); ++s) { max_lines = 0; // Apply color rules to task. Color rule_color; autoColorize(data[sequence[s]], rule_color); // Alternate rows based on |s % 2| bool odd = (s % 2) ? true : false; Color row_color; if (Context::getContext().color()) { row_color = odd ? _odd : _even; row_color.blend(rule_color); } for (unsigned int c = 0; c < _columns.size(); ++c) { cells.emplace_back(); _columns[c]->render(cells[c], data[sequence[s]], widths[c], row_color); if (cells[c].size() > max_lines) max_lines = cells[c].size(); if (obfuscate) if (_columns[c]->type() == "string") for (auto& line : cells[c]) line = obfuscateText(line); } // Listing breaks are simply blank lines inserted when a column value // changes. if (s > 0 && _breaks.size() > 0) { for (const auto& b : _breaks) { if (data[sequence[s - 1]].get(b) != data[sequence[s]].get(b)) { out += "\n"; ++_lines; // Only want one \n, regardless of how many values change. break; } } } for (unsigned int i = 0; i < max_lines; ++i) { out += left_margin + (odd ? extra_odd : extra_even); for (unsigned int c = 0; c < _columns.size(); ++c) { if (c) { if (row_color.nontrivial()) row_color._colorize(out, intra); else out += (odd ? intra_odd : intra_even); } if (i < cells[c].size()) out += cells[c][i]; else row_color._colorize(out, std::string(widths[c], ' ')); } out += (odd ? extra_odd : extra_even); // Trim right. out.erase(out.find_last_not_of(' ') + 1); out += "\n"; // Stop if the line limit is exceeded. if (++_lines >= _truncate_lines && _truncate_lines != 0) { Context::getContext().time_render_us += timer.total_us(); return out; } } cells.clear(); // Stop if the row limit is exceeded. if (++_rows >= _truncate_rows && _truncate_rows != 0) { Context::getContext().time_render_us += timer.total_us(); return out; } } Context::getContext().time_render_us += timer.total_us(); return out; } ////////////////////////////////////////////////////////////////////////////////